By Satyajit Ganguly, Managing Director, North East Transmission Company Limited (NETCL); Rajesh Gupta, Chief General Manger, Powergrid, Ex-Director Project, NETCL; and Harshal Malewar, Deputy Manager, PMS/Project, NETCL
Transmission towers are prone to collapse under heavy wind loads. Due to practical limitations in design and constraints of resources, transmission line towers cannot be constructed to withstand all types of calamities. Consequently, tower failures are being observed during natural calamities such as storms, typhoons, strong winds, heavy rains, floods, earthquakes and landslides as well as man-made disasters such as sabotage. Post Insulator
Earlier, these breakdowns were being attended to through conventional restoration methods, which involved debris removal, casting/repairing of concrete foundations, arrangement of all tower parts and line material, erection and stringing. These activities required a minimum of four to six weeks, depending on the nature of the failure, mainly due to the settling time required for cement concrete in foundations. Consequently, power systems were prone to long breakdowns. This, coupled with the fact that the transmission system in the country has low redundancy, led to serious issues in attending to tower collapses or line diversions.
A unique method being used to overcome tower collapse problems is the emergency restoration system (ERS). This comprises temporary towers that are primarily used in electrical transmission lines. The ERS has a modular construction, made of aluminium alloy or hot dip galvanised structural steel or a combination of both. Aluminium alloy is preferred for its light weight. These quick-erect, corrosion-free aluminium towers can be raised in the field in less than a day and are used to address outages/trippings in power lines during emergencies, maintenance requirements, line diversions and various other applications. It is a proven technique to deal with disaster management in the transmission sector.
The high wind velocity during storm, cyclone and local phenomenon of whirlwind, etc., might have exceeded the wind speed for which the tower is designed. This type of wind is difficult to predict. Theft/Sabotage of tower members, generally theft of secondary members (connected with one or two bolts) of towers by the local people makes the tower structurally weak, which ultimately leads to failure during high speed wind/storms/whirlwind/cyclone/avalanche, etc. Sometimes, proper protection has not been provided for the foundation of towers in steep slope/hilly terrain. Many times, landslides cause erosion of soil below the foundation, which, in turn, causes the failure of foundation and subsequently, failure of towers. The tower foundation’s failure (located near a riverbank) is due to erosion of soil below the foundation by flash floods or change in the river course.
The advantages of using ERS are numerous, including no requirement for a foundation, bypassing of critical towers, reduction in inventory, standardised design as per IEEE1070, modular design, besides being very user friendly, quick restoration of collapsed portion of transmission line, no civil engineering work is required, besides avoidance of high political and social cost.
The ERS structure is designed for easy handling and transportation. The column section is the heaviest component. ERS includes insulators and conductor hardware. Polymer suspension and post insulators are of high strength and low weight, which can be easily transported to difficult terrains, including hilly areas. All components can be easily transported by open trucks to any nearby location and after that they can be shifted to various tower locations by head-loading.
The major components of a typical ERS are:
Skilled manpower is required to install the ERS structure and proper safety measures are to be taken. ERSs are shipped in maritime containers that act as a way of mobilising as well as storing the material. The ERS has a container storage system, where the small hardware and equipment tools and plant are nicely stored in bins and shelves to quickly identify and take the material out.
The ERS is an effective disaster management tool for damaged transmission lines. Damaged/fallen transmission structures can be replaced in a few hours, depending on the nature and depth of the damage. Proper planning not only maximises the restoration of efficiency but can also minimise inventory levels. For utilities, having an effective emergency restoration plan can help control the financial impact of losses due to weather-related power outages. By using an ERS, high revenue loss and penalties can be saved by utilities and damaged or diverted transmission lines can be restored at the earliest.
GET ACCESS TO OUR ARTICLES Enter your email address Subscribe to Newsletter Please leave this field empty. Δ
GET ACCESS TO OUR ARTICLES
Subscribe to Newsletter Please leave this field empty.
Name (required) Email (required) Company Name (required) Designation (required) Phone Number Please leave this field empty. Δ
Name (required) Email (required) Company Name (required) Designation (required) Phone Number Please leave this field empty.
Name (required) Email (required) Company Name (required) Designation (required) Phone Number Please leave this field empty.
Download Rate Card for Overseas Companies
Company Name (required) Please leave this field empty. Phone Number
Download Rate Card for Indian Companies
Company Name (required) Please leave this field empty. Phone Number Input this code:
Company Name (required) Please leave this field empty. Phone Number
Cable Cover&Pinpost Housing Email (required) Please leave this field empty.